Acta Crystallographica Section C
Crystal Structure Communications
ISSN 0108-2701

21α-Fluoro-7-norvouacapane-17 $\beta, 21 \alpha$ lactone ${ }^{1}$

Silvana Guilardi Ruggiero, ${ }^{\text {a }}$ Maria Teresa do Prado Gambardella, ${ }^{\text {b* }}$ Marcelo Cardoso Branco, ${ }^{\text {b }}$ Antonio Jacinto Demuner, ${ }^{\text {c }}$ Luis Claudio A. Barbosa ${ }^{\text {c }}$ and Dorila Piló-Veloso ${ }^{\text {d }}$

${ }^{\text {a }}$ Departamento de Química, Universidade Federal de Uberlândia, Av. João Naves de
Avila, $2160,38400.089$ Uberlândia MG, Brazil, ${ }^{\text {b }}$ Instituto de Química de São
Carlos, USP, Caixa Postal $780,13560.970$ São Carlos SP, Brazil, ' Departamento de
Química, UFV, Caixa Postal $111,36571.000$ Viçosa MG, Brazil, and d departamento
de Química, ICEx, UFMG, Caixa Postal $702,31270.901$ Belo Horizonte MG, Brazil
Correspondence e-mail: teca@iqsc.sc.usp.br

Received 11 November 1999
Accepted 28 March 2000
The crystal structure of 21α-fluoro-7-norvouacapane-17 $\beta, 21 \alpha$ lactone, $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{FO}_{3}$, a new synthetic derivative of the diterpenoid $6 \alpha, 7 \beta$-dihydroxyvouacapan- 17β-oic acid isolated from Pterodon polygalaeflorus Benth fruits, is described.

Comment

As part of our investigation of the structural requirements for the biological activities presented by derivatives of the diterpenoid $6 \alpha, 7 \beta$-dihydroxyvouacapan- 17β-oic acid, (I), isolated from Pterodon polygalaeflorus Benth (Rubinger et al., 1991), we have described recently an attempt to substitute the

hydroxyl groups of compounds (I) and 6α-hydroxy-vouacapane- $7 \beta, 17 \beta$-lactone, (II), with F atoms (Demuner et al., 1998). In both cases, the fluorine derivative 21α-fluoro-7-norvouacapane-17 $\beta, 21 \alpha$-lactone, (III), has been obtained. The

[^0]introduction of F atoms into new molecules is a common strategy for the development of new drugs (Wilkinson, 1992). Our purpose in this case was to produce more lipophilic analogues of compounds (I) and (II) that would still be able to make hydrogen bonds at position eight and would be less sterically hindered at that position.

The structure of compound (III) was proposed based on spectroscopic data. Electron impact mass spectrometry showed an M^{+}ion peak at $m / z 332.1784$, corresponding to the molecular formula $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{FO}_{3}$. In the infrared spectrum, no absorption around $3300 \mathrm{~cm}^{-1}$ was observed, indicating that no hydroxyl group was present in the molecule. Further evidence for the presence of fluorine in this molecule comes from the ${ }^{19}$ F-NMR spectrum that showed only one double doublet $\left(J_{\mathrm{F}, \mathrm{H} 21}=54\right.$ and $\left.J_{\mathrm{F}, \mathrm{H} 6}=33 \mathrm{~Hz}\right)$ at $\delta-128.1$ p.p.m. We now present the X-ray study that confirms the proposed structure of this rearranged diterpenoid. This was important as the product obtained had resulted from an unexpected rearrangement. An ORTEPIII (Burnett \& Johnson, 1996) drawing of the title compound is shown in Fig. 1.

Figure 1
An ORTEPIII view (Burnett \& Johnson, 1996) of the title compound showing 40% probability displacement ellipsoids.

A conformation analysis (Cremer \& Pople, 1975; Iulek \& Zukerman-Schpector, 1997) of (III) shows that the $A\left[q_{2}=\right.$ 0.040 (3), $q_{3}=0.556$ (3), $Q=0.557$ (3) $\AA, \theta=4.1$ (3), $\varphi=$ $\left.340(4)^{\circ}\right]$ and $C\left[q_{2}=0.418\right.$ (3), $q_{3}=0.365$ (3), $Q=0.555$ (3) A , $\theta=48.8$ (3), $\left.\varphi=15.7(4)^{\circ}\right]$ rings, respectively, adopt chair and distorted half-chair conformations, like its precursors (I) (Ruggiero et al., 1997) and (II) (Abrahão-Junior et al., 1997). The $B\left[q_{2}=0.501\right.$ (3) A,$\varphi=323.6$ (3) $\left.{ }^{\circ}\right]$ and $D\left[q_{2}=0.685\right.$ (3), $q_{3}=-0.049$ (3), $Q=0.687$ (3) $\AA, \theta=94.1$ (2), $\varphi=301.2$ (2) $\left.{ }^{\circ}\right]$ rings have envelope and boat conformations, respectively.

The junctions of the rings $A B, B C$ and $C D$ are trans and the junction $B D$ is cis. Some bond distances and angles of the norvouacapane fused rings are shown in Table 1. In the crystal packing there is a short contact: $\mathrm{F} \cdots \mathrm{C} 1^{\mathrm{i}}=3.525(3), \mathrm{F} \cdots \mathrm{H} 11^{\mathrm{i}}=$ $2.808 \AA, \mathrm{~F} \cdots \mathrm{H} 11^{\mathrm{i}}-\mathrm{C1}^{\mathrm{i}}=131^{\circ}$ [symmetry code: (i) $2-x, \frac{1}{2}+y$, $1-z]$.

Experimental

The title compound has been prepared from both compounds (I) and (II) under the same conditions. Its synthesis and spectroscopic characterization has been reported recently (Demuner et al., 1998).

Suitable single crystals of the title compound were obtained by slow evaporation of a tetrahydrofuran/ethanol (1:10) solution. The absolute structure could not be determined.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{FO}_{3}$
$M_{r}=332.40$
Monoclinic, $P_{2} 2_{1}$
$a=9.440(1) \AA$
$b=9.366(1) \AA$
$c=9.741(1) \AA$
$\beta=101.69(1)^{\circ}$
$V=843.4(2) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& D_{x}=1.309 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=10.31-18.31^{\circ} \\
& \mu=0.094 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, colourless } \\
& 0.45 \times 0.40 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4 diffract-	$R_{\text {int }}=0.031$
ometer	$\theta_{\max }=26.29^{\circ}$
$\omega / 2 \theta$ scans	$h=0 \rightarrow 11$
Absorption correction: ψ scan	$k=-11 \rightarrow 0$
\quad (North et al., 1968)	$l=-12 \rightarrow 11$
$T_{\min }=0.961, T_{\max }=0.993$	3 standard reflections
1920 measured reflections	frequency: 120 min
1813 independent reflections	intensity decay: 1%

1813 independent reflections
1571 reflections with $I>2 \sigma(I)$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

F-C21	$1.390(3)$	C6-C8	$1.533(4)$
O2-C17	$1.192(3)$	C8-C9	$1.528(3)$
O3-C11	$1.387(4)$	C8-C14	$1.533(3)$
O3-C21	$1.421(3)$	C9-C11	$1.531(4)$
C5-C6	$1.550(3)$	C9-C10	$1.539(3)$
C5-C10	$1.560(3)$	C13-C14	$1.509(4)$
C6-C21	$1.518(3)$	C14-C17	$1.488(4)$
C17-O3-C21	$120.2(2)$	C11-C9-C10	$123.4(2)$
C4-C5-C6	$121.2(2)$	C1-C10-C9	$115.0(2)$
C4-C5-C10	$117.0(2)$	C1-C10-C5	$108.4(2)$
C6-C5-C10	$103.10(19)$	C17-C14-C13	$119.0(2)$
C21-C6-C8	$109.7(2)$	C17-C14-C8	$107.1(2)$
C21-C6-C5	$119.4(2)$	C13-C14-C8	$106.1(2)$
C8-C6-C5	$103.42(19)$	O2-C17-O3	$117.9(3)$
C9-C8-C14	$110.21(19)$	O2-C17-C14	$128.7(3)$
C9-C8-C6	$107.32(19)$	O3-C17-C14	$113.3(2)$
C14-C8-C6	$114.99(19)$	F-C21-O3	$107.6(2)$
C8-C9-C11	$109.5(2)$	F-C21-C6	$111.0(2)$
C8-C9-C10	$101.96(19)$	O3-C21-C6	$112.1(2)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$

$$
S=1.111
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0491 P)^{2}\right. \\
& \quad+0.1231 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.19 \mathrm{e} \AA^{-3}
\end{aligned}
$$

1813 reflections
218 parameters
H -atom parameters constrained
H atoms were positioned geometrically and a riding model was used during the refinement process with $U_{\text {iso }}$ set to 1.5 (for methyl-H atoms) or 1.2 (for the remaining) times the value of $U_{\text {eq }}$ of the atom to which they are attached.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: SDP (Fair, 1990); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996); software used to prepare material for publication: SHELXL97.

The authors thank the Brazilian agencies CNPq, FAPEMIG, FAPESP and FINEP for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1124). Services for accessing these data are described at the back of the journal.

References

Abrahão-Junior, O., Gambardella, M. T. P., Ruggiero, S. G., Sacramento, T. M., Stefani, G. M. \& Piló-Veloso, D. (1997). Acta Cryst. C53, 1508-1510.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Demuner, A. J., Barbosa, L. C. A., Piló-Veloso, D. \& Howarth, O. W. (1998). Aust. J. Chem. 51, 61-66.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Iulek, J. \& Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433-434.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Rubinger, M. M. M., Piló-Veloso, D., Stefani, G. M. \& Alves, D. L. F. (1991). J. Brazil. Chem. Soc. 2, 124-128.
Ruggiero, S. G., Rodrigues, B. L., Fernandes, N. G., Stefani, G. M. \& PilóVeloso, D. (1997). Acta Cryst. C53, 982-984.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Wilkinson, J. A. (1992). Chem. Rev. 92, 507-519.

[^0]: ${ }^{1}$ Alternative name: $3,3 \mathrm{a}, 7,7 \mathrm{a}, 7 \mathrm{~b}, 8,9,10,11,11 \mathrm{a}, 11 \mathrm{~b}, 11 \mathrm{c}$-dodecahydro-1-fluoro-7b,11,11-trimethyl-1H-2-oxafuro[2,3-b]fluoranthen-3-one.

